شايد تا بحال از خود پرسيده باشيد که چرا مواد مختلف با هم متفاوتند؟ چرا برخي از آن‌ها محکم تر از سايرين هستند؟ چرا برخي از مواد رسانا و برخي نارسانا؟ چرا نور مي‌تواند از بعضي از مواد عبور ‌کند و از بعضي ديگر نه؟
سئوالاتي از اين دست ذهن را متوجه تفاوت‌‌هاي مواد از نظر خواص مي‌‌کند و ما را در رابطه با علت اين تفاوت‌‌ها، به تفکر بيشتر وادار مي‌‌کند. با اطلاعاتي که ما از ساختمان عناصر و تفاوت‌‌هاي موجود در عناصر داريم شايد گمان کنيم که تفاوت‌‌‌‌هاي موجود در مواد مختلف حاصل تفاوت‌‌هاي عناصر تشکيل دهنده آنها است. با اين تفکر مواد تنها متاثر از تنوع عناصر تشکيل دهنده خود خواهند بود و تمامي ويژگي‌‌هاي رفتاري مواد با شناخت عناصر تشکيل دهنده آنها روشن خواهد شد. بر اين اساس مشخص شدن عناصر تشکيل دهنده يعني تعيين ترکيب شيميايي همه اسرار مربوط به خصوصيات مواد را آشکار مي‌‌کند. براستي با دانستن ترکيب شيميايي، خواص مواد معلوم خواهد شد؟
با کمي دقت و توجه به ترکيبات شيميايي مواد پيرامون خويش در مي‌‌يابيم که بسياري از آنها با وجود اين که در رفتار و خواص با يکديگر بسيار متفاوتند، داراي عناصر تشکيل دهنده و ترکيب شيميايي يکسان مي‌باشند و برخي ديگراز مواد با داشتن عناصر تشکيل دهنده و ترکيب شيميايي متفاوت با يکديگر، داراي خواص و رفتار مشابهي هستند. پس چه چيزي بجز ترکيب شيميايي موجب تفاوت در رفتار مواد مي‌‌شود؟
براي جواب اين سئوال لازم است که بيشتر با ساختار و ويژگي‌هاي مواد آشنا شويم.

ساختار مواد چيست؟
ساختار مواد ارتباط بين اتم‌‌ها، يون‌‌ها و مولکول‌‌هاي تشکيل دهنده آن مواد را مشخص مي‌‌کند. براي شناخت ساختار مواد ابتدا بايد به نوع اتصالات بين اتم‌‌ها و يون‌‌ها پي برد. به طور حتم با پيوندهاي شيميايي آشنايي داريد. پيوندهاي شيميايي نحوه اتصال ميان اتم‌‌ها و يون‌‌ها را مشخص مي‌‌کنند. بنابراين تفاوت پيوندهاي شيميايي مختلف را در ويژگي‌هاي اين پيوندها مي‌‌توان مشاهده کرد. به عنوان مثال در نمک طعام به دليل وجود پيوند يوني که منجر به محصور شدن الکترون‌‌ها مي‌‌شود، خاصيت "رسانايي" مشاهده نمي‌شود زيرا الکترون‌‌ها که حامل و انتقال دهنده‌ي بار الکتريکي هستند، به دليل محصور شدن امکان حرکت ندارند و چيزي براي انتقال بار الکتريکي در ميان ماده وجود نخواهد داشت. در مقابل در فلزات، مانند مس، به دليل وجود پيوند فلزي که موجب آزادي الکترون‌‌ها مي‌‌شود و امکان تحرک الکترون‌‌ها را فراهم مي‌‌نمايد، مي‌‌توانيم خاصيت رسانايي را انتظار داشته باشيم. زيرا الکترون‌‌هاي آزاد، امکان انتقال بار الکتريکي را در طول ماده فراهم مي‌آورند. همانطور که ذکر شد اطلاع از نوع پيوندهاي اتمي مي‌‌تواند به شناخت ما از رفتار و خواص مواد کمک کند. اما آيا تنها با دانستن نوع پيوندها تمامي خواص و رفتار يک ماده را مي‌‌توان پيش‌‌بيني کرد؟
براي روشن شدن مطلب مثال معروفي را ارائه مي‌‌کنيم. همانطور که مي‌‌دانيد گرافيت و الماس هر دو از اتم‌‌هاي کربن تشکيل شده‌‌اند و هر دو "ريخت‌‌هاي" مختلفي از عنصر کربن هستند. اما چرا خواص گرافيت و الماس تا اين حد با يکديگر متفاوت است؟ الماس به عنوان سخت‌‌ترين ماده طبيعي معرفي مي‌‌گردد و گرافيت به دليل نرمي بسيار، به عنوان ماده "روانساز" به کار گرفته مي‌‌شود! تفاوت رفتار و خواص گرافيت و الماس را به نوع اتصال و پيوند شيميايي اتم‌‌هاي کربن نمي‌‌توان نسبت داد زيرا در هر دو شکل اين ماده - که تنها داراي اتم‌‌هاي کربن است - يک نوع پيوند شيميايي وجود دارد. بلکه علت در "چگونگي اتصالات و پيوندهاي شيميايي" اين دو شکل کربن است. در گرافيت اتم‌‌هاي کربن شش ضلعي‌‌هاي پيوسته‌‌اي شبيه به يک لانه زنبور تشکيل مي‌‌دهند که در يک سطح گسترده شده است. لايه‌‌هاي شش ضلعي ساخته شده با قرار گرفتن روي هم، حجمي را تشکيل مي‌‌دهند که به آن گرافيت مي‌‌گوييم. واضح است که در ساختار گرافيت دو نوع اتصال وجود خواهد داشت: يک نوع اتصال، اتصالي است که بين اتم‌‌هاي کربن هر لايه لانه زنبوري وجود دارد و جنس آن از نوع پيوند کوالانسي است. نوع دوم اتصالي است که لايه‌‌هاي لانه زنبوري را به يکديگر وصل مي‌کند. بديهي است که اين نوع از جنس اتصالات اوليه يعني پيوندهاي اتمي نيست. بنابراين پيوند به هم پيوستگي دوم - که قدرت به هم پيوستگي لايه‌‌ها را مشخص مي‌‌کند - ضعيف‌‌تر از اتصال اوليه که يک پيوند کوالانسي است، خواهد بود. پس مي‌توان انتظار داشت که گرافيت، در جهت صفهات لانه‌زنبوري به دليل داشتن پيوند قوي کووالانسي استحکام بالايي داشته باشد؛ بالعکس، اين ساختار در جهت عمود بر صفحات لانه زنبوري به علت وجود پيوند ضعيف ثانويه بين لايه‌ها، به مراتب کمتر از استحکام درون آنها، داراي مقاومت است. از طرفي به دليل پيوندهاي ضعيف بين لايه‌‌اي انتظار مي‌‌رود که با اعمال نيرويي بيشتر، لايه‌‌هاي لانه زنبوري بتوانند بر روي يکديگر بلغزند.


1- ساختار گرافيت

در مقابل ساختار لايه‌اي گرافيت، الماس داراي يک ساختار شبکه‌اي است. در گرافيت پيوندهاي اوليه يعني پيوندهاي اتمي تنها در يک سطح (در يک وجه) برقرار مي‌‌شود در حالي که در ساختار الماس اين پيوندها به صورت شبکه‌‌اي سه بعدي فضا را پر مي‌‌کنند. در ساختار گرافيت هر اتم کربن با سه اتم کربن ديگر اتصال اتمي از جنس کوالانسي ايجاد مي‌‌کند، در حالي که در ساختار الماس هر اتم کربن با چهار اتم کربن ديگر پيوند اتمي و از جنس کوالانسي برقرار مي‌نمايد.

گرافیت
کانی گرافیت
اطلاعات کلی
وجه تسمیه از کلمه یونانی graphein به معنی نوشتن
ترکیب شیمایی C=۱۰۰٪ ولی اغلب همراه با باH,N,CO2,CH4 ,SiO2,Al2O۳
رده بندی عنصر
اطلاعات کانی شناسی
ساختار بلوری هگزاگونال
شکل بلوری ورقه‌های شش گوش و به طور کمیاب به صورت ماکله
شکل ظاهری بلوری- فلسی- توده‌ای
رنگ خاکستری تیره - سیاه - خاکستری فلزی
رنگ خاکه خاکستری تیره فلزی درخشان
سختی موس ۱-۲
وزن مخصوص ۲٫۰۹ - ۲٫۲۳ g/cm³
جلا فلزی - مات
شفافیت غیرشفاف - شفاف
پاراژنز پیریت، کلسیت، مارکاسیت
کانی مشابه مولیبدنیت - کانیهای منگنز دار
اطلاعات معدنی
کانسار فراوان; بیشتر در آمریکا، روسیه ، ماداگاسکار، چک و اسلواکی
منشأ تشکیل پگماتیتی - دگرگونی حرارتی
محل پیدایش سری لانکا
کاربرد در متالورژی ، الکتروتکنیک ، رآکتورهای اتمی و ساخت انواع مداد [۱]



گرافیت یکی از آلوتروپ‌های کربن است که ساختار لایه-لایه داشته و به رنگ سیاه است واز قرار گرفتن ۶ اتم کربن به صورت ۶ ضلعی منظم پدید آمده این اتم ها با پیوند کوالانسی به هم متصلند و نمی توانند با کربنی خارج از این لایه پیوند کوالانسی دهندبنابراین یک لایه گرافیت از طریق پیوند واندر والس -که پیوند ضعیفی است- به لایه های زیرین متصل است این خاصیت سبب می شود لایه های گرافیت به راحتی به روی هم بلغزند. به همین دلیل از این ترکیب برای «روان کاری» و «روغن کاری» استفاده می شود. از گرافیت به عنوان الکترودهای کوره، روان کننده، ماده نسوز، قطعات الکتریکی، رنگ‌ها، فولادهای پرکربن، چدن‌ها، مداد گرافیتی و … استفاده می‌شود.

2- ساختار الماس

با توضيحاتي که راجع به تفاوت‌‌هاي ساختاري گرافيت و الماس داده شد مشخص مي‌‌گردد که دليل نرمي گرافيت و سختي الماس در چيست. همانطور که ديديد ساختار با مشخص کردن نوع، تعداد و چگونگي پيوندهاي تشکيل دهنده مواد، تاثير به سزايي در خواص مواد دارد. بنابراين از طريق مطالعه در ساختار مواد، بسياري از رفتارها و خواص آنها را مي‌‌توان پيش‌‌بيني کرد. همچنين براي دستيابي به برخي از خواص مي‌‌توان ساختار متناسب با آنها را طراحي نمود.

 
خواص متمایز الماس
ساختار مکعبی الماس.
  • الماس در بین جامدات در دمای ۲۵ درجه بالاترین هدایت گرمایی را دارد. (هدایت گرمایی آن ۵ برابر مس است)
  • الماس مادهٔ نوری ایده‌آلی است که توانایی انتقال طیف نوری فروسرخ تا فرابنفش را دارا است.
  • شاخص بازتابش بسیار بالایی دارد.
  • خواص نیمه‌رسانایی قابل توجهی دارد. شکست الکتریکی آن بطور متوسط ۵۰ برابر نیمه‌رساناهای متداول است.
  • در برابر تابش نوترونی به‌شدت مقاوم است.
  • سخت‌ترین مادهٔ شناخته شده‌است.
  • در مجاورت هوا روانی طبیعی فوق‌العاده‌ای دارد (مانند تفلون)
  • استحکام و صلبیت بسیار بالایی دارد.

با وجود این خواص منحصربه‌فرد، قیمت بالای آن جلوی کاربرد گستردهٔ آن را می‌گیرد و دانشمندان به دنبال پیدا کردن روش‌های تازه برای سنتز آن هستند.


[ویرایش] تولید الماس

الماس بطور طبیعی تحت فشارهای زیاد اعماق زمین و در زمانی طولانی شکل می‌گیرد. اما در آزمایشگاه می‌توان به کمک دو فرآیند مجزا در زمانی بسیار کوتاهتر الماس تولید کرد. فرآیند فشار بالا _ دما بالا (HP HT) اساساً تقلیدی است از فرآیند طبیعی شکل گیری الماس در حالی که فرآیند رسوب گیری بخار شیمیایی (CVD) دقیقاً خلاف آن عمل می‌کند. در واقع CVD بجای وارد کردن فشار به کربن برای تولید الماس با آزاد گذاشتن اتمهای کربن به آنها اجازه می‌دهد با ملحق شدن به یکدیگر به شکل الماس در آیند.

این دو تکنیک برای اولین بار در دهه ۱۹۵۰ کشف شدند. به گفته باتلر که هفده سال روی تولید الماس با استفاده از تکنیک CVD کار کرده‌است «از آنجا که پیشگامان تولید الماس بدون فشار بالا در دهه ۱۹۵۰ با تمسخر سایرین از میدان به در شدند. تکنولوژی CVD هنوز دوران کودکی‌اش را سپری می‌کند.» هر دو فرآیند قادرند با سرعتی خیره کننده الماسهایی با کیفیت جواهر تولید کنند، اما در نهایت این فرآیند CVD است که بخاطر کنترل ساده ناخالصی و اندازه محصول برای تکنولوژی‌های الکترونیکی مناسب‌ترین خواهد بود.

فرآیند CVD با قرار دادن ذره بسیار کوچکی از الماس در خلأ آغاز می‌شود. سپس گازهای هیدروژن و متان به محفظه خلأ جریان می‌یابند. در ادامه پلاسمای تشکیل شده باعث شکافته شدن هیدروژن به هیدروژن اتمی می‌شود که با متان واکنش می‌دهد تا رادیکال متیل و اتمهای هیدروژن بوجود آیند. رادیکال متیل نیز به ذره الماس می‌چسبد تا الماس بزرگ شود. رشد الماس در تکنیک CVD، فرآیندی خطی است، بنابراین تنها عوامل محدودکننده اندازه محصول در این روش بزرگی ذره ابتدایی و زمان قرار دادن آن در دستگاه است.

به گفته دیوید هلیر (D. Hellier)، رئیس بخش بازاریابی کمپانی ژمسیس، «فرآیند HP HT نیز با ذره کوچکی از الماس آغاز می‌شود. هر ذره الماس در محفظه‌های رشدی به اندازه یک ماشین رختشویی، تحت دما و فشار بسیار بالا درون محلولی از گرانیت و کاتالیزوری فلزی غوطه‌ور می‌شود. در ادامه تحت شرایط کاملاً کنترل شده‌ای این الماس کوچک به تقلید از فرآیند طبیعی، مولکول به مولکول و لایه به لایه شروع به رشد می‌کند.»

گر چه جنرال الکتریک در تولید الماس‌ها به این روش پیشگام است و الماس‌های ساخته شده با تکنیک HP HT را برای مصارف صنعتی به بازار عرضه می‌کرد اما تا پیش از آنکه کمپانی ژمسیس با ساده سازی این فرآیند امکان تولید نمونه‌هایی با کیفیت جواهر را فراهم کند، هرگز آن الماس‌ها به عنوان سنگهای قیمتی به فروش نرسیده بودند.

در واقع الماس‌های زینتی مصنوعی بخش کوچک و در عین حال پر سودی از صنعت الماس را تشکیل می‌دهند. این الماسهای رنگی که در مقایسه با همتاهای بی‌رنگ شان فوق العاده کمیاب و در نتیجه بسیار گرانبها ترند با توجه به نوع ناخالصیها در رنگهای گوناگون از سرخ و صورتی گرفته تا آبی، سبز و حتا زرد روشن و نارنجی تولید می‌شوند. در واقع این الماسها می‌توانند چنان کیفیت بالایی داشته باشند که حتی ماشینهای ساخته شده برای تشخیص سنگهای مصنوعی از طبیعی در تفکیکشان از یکدیگر دچار مشکل شوند، همانطور که امروزه برخی از بزرگ‌ترین الماس فروشان در صنعت نیز به زحمت از پس آن بر می‌آیند.

شباهت فوق العاده نمونه‌های مصنوعی و طبیعی باعث شده‌است تا تاجران الماس برای تشخیص الماسهای رنگی مصنوعی از سنگهای طبیعی دست به دامن آزمایشگاه‌های الماس بلژیک و دیگر نقاطی شوند که بطور سنتی عهده دار تجزیه و تحلیل و تأیید الماسها از نظر بزرگی قیراط، رنگ و شفافیت هستند.

[ویرایش] انواع الماس

  • الماس طبیعی

هنوز اساساً تنها منبع جواهرات بوده و بالاترین بها را دارد.

  • الماس سنتزی فشار بالا

سهم گسترده‌ای از بازار صنعت را به خود اختصاص داده‌است. به عنوان ساینده و ابزار برشی و ماشینکاری به کار می‌رود.

پتانسیل‌های زیادی برای کاربرد در صنعت دارد ولی هنوز بصورت آزمایشگاهی تولید می‌شود.

  • کربن شبه-الماس (DLC)

اخیراً تولید شده اما دارای کاربردهایی در زمینهٔ ابزار نوری دقیق است.

[ویرایش] ناخالصی‌ها

خواص الماس شدیداً به ناخالصی‌ها وابسته‌است. حتی وجود مقادیر جزئی ناخالصی مانند نیتروژن می‌تواند خواص آن را بسیار تغییر دهد.

[ویرایش] انواع ناخالصی‌ها

الماس چه به صورت سنتزی و چه به صورت طبیعی هرگز به شکل کاملاً خالص نیست. این ناخالصی‌ها را می‌توان به دو دسته تقسیم کرد:

  • ناخالصی‌های شبکه

این نوع ناخالصی‌ها در شبکهٔ الماس به جای یکی از اتم‌های کربن قرار می‌گیرند و با اتم‌های مجاور تشکیل شیوند می‌دهند.

  • آخال

این ناخالصی‌ها ذرات مجزایی هستند که شبکه را برهم زده و بخشی از آن نمی‌شوند. این ناخالصی‌ها معمولاً سیلیکات‌های آلومینیوم، سیلیکات‌های منیزیم و یا سیلیکات‌های کلسیم هستند.

دو ناخالصی مهم در الماس نیتروژن و بور هستند. این دو عنصر همسایه‌های کربن در جدول تناوبی بوده و به علت داشتن شعاع اتمی کوچک و متناسب، به خوبی در شبکهٔ کریستالی الماس جایگزین می‌شوند.